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A CONDITIONAL PROPERTY OF ADAPTIVE ESTIMATORS

By William C. Parr

Institute of Statistics, Texas A&M University, College Station, Texas

SUMMARY i

In adaptive-estimation, it is often considered that an

estimator has made a mistake if the component estimator

chosen for use is not the most efficient for the distributlon

sampled. Theoretical and simulation results point to a

. fallacy in this line of thought. The Monte Carlo study involves
extension of the Princeton Swindle to distributions con-

ditional on a location- and scale-free statistic, and to the

uniform. The results give a partial explanation for the

sometimes surprising robutness of adaptive L-estimators.

Keywords:- Adaptive estimation; conditional reference sets; Monte Carlo ti

swindles; robustness

1. INTRODUCTION

There has been a great deal of recent interest in the use of adaptive
estimators to achieve the goals of robust estimation. Hogg (1974) gives

a broad perspective on the state of the art from one of the field's

pioneers. Adaptive estimators may be roughly characterized as follows. :
A "preliminary" statistic (Hogg's Q as defined below, the sample |8

kurtosis, or perhaps some combination of skewness and tailweight measures)
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is calculated from the data, and used to select an estimator T from a
class {TA' A € A}, Typically, the preliminary statistic is a sample
measure of a population characteristi; known to affect drastically the
relative behavior of the TA'

The motivation for our study of the behavior of estimators conditional
on a preliminary statistic is best understood by means of an example.

Let the adaptive estimator T (for the point of symmetry of a symmetric

population) be defined by

T = { T(.10) if Q < 2.0
T(.25) if Q > 2.0
where
( median ..
1 n-{na)
X 0<ac<.,5
B AR e
it (n(a+.5)]+1
i :
2{[n(a+.5)]+1} izl(x(i) * x(n—iﬂ.)) S<ac<0
\ midrange P

x(i) (1 =1, ..., n) are the sample order statistics, and

G~ 0(.05)_= 1.(.05)
U(.5) = L(.9)

U(s) and L(a) being the average of ‘the largest and smallest [na] order
statistics respectively. Note that, for a < 0, T(a) = % {u¢ja))

+ L(la]) . Q is thus a location-and scale-free tailweight
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measure. (Population values are 1.95, 2.58, and 3.30 for the uniform,
normal, and double exponential, respectively.)

The usual presumption has been that if one is sampling from an
extremely heavy-tailed distribution and observes a sample with Q < 2.0,
hence using T = T(.10), a 10X trimmed mean instead of a 252 trim, an
error has been made. The following work demonstrates, however, that it

is quite possible that although

v.rCIHChy(T('lo)) . v.rc.uchy('r(-ZS)) ’
and also, in fact,
Varc‘uchy(r(.IO)lQ < 2.0) > v'rCanchy(T(‘zs)lq <2.0) ,

T(.25) may be much less inefficient with respect to T(.10)

when sampling from the conditional distribution, given Q < 2.0. This would
agree with the view that samples from the Cauchy with Q < 2.0 are more
uniform- or normal~like than their unco;lditional counterparts.

2. SOME THEORETICAL INSIGHTS

In this section we consider the case where K is a location- and scale-
free statistic, T is an unbiased location estimator (i.e. T[aX + bl] =
‘aT[X] + b for a # 0), and the sampling is from a location family,

i.e. fe(x) = f(x - 0) for all x ¢ R. If a complete and sufficient

statistic for 6 exists, we let ch denote the unbiased estimator of & which

N
is a function of it. ‘ &
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Then,

Var(T|K) = var(T - Tee * TeQl®
= Var(T - rc.l&) + Var(T_ [K)

= E((T - T )?|K) + Var(T )

by Basu's theorem, since the distribution of T - Tcn is parameter free.
(Note that Basu's theorem works for the conditional distributions because

Tc. and K are statistically independent, as are Tcn and T - Tc..)

Thus, we see that
(1) IfT= Tc‘. i.e. if our estimator is a function of a
complete and sufficient statistic, then the conditional
variance (in fact the entirc distribution) of T is the
same as the unconditional.
(11) A reasonable measure of the extent the conditional

variance of T depends upon K would be

- 2 -
var(E {(T - T ) |K}] = ¢

and T would be made large by a dependence between K
and |T - Tc.l, together with the possibility of large

values of |T - Tcsl‘

Based upon these two considerations, we expect the conditional variances
to vary from the unconditional primarily for estimators T which are
of low efficiency and for conditioning variables K which truly reflect

characteristics which are related to the efficiency of T,




3. SIMULATION METHODS AND RESULTS

Several points regarding the Monte Carlo methods used in this study
are of interest. It is desired to estimate the variances of T(a) for
several values of a, at the normal, .75N(0,1) + .25N(0,9), and uniform
distributions, conditional on observing Q in specified ranges, for samples
of size 20, (Note ,.75N(0,1) + .25N(0,9) is not a true distribution, but
a pseudo-sample consisting of 15 observations from N(0,1) and 5 from N(0,9).)

The first point is that, for those distributions where the Princeton
Swindle is applicable, the extension to those distributions conditional on a
location-and scale-free statistic is immediate. If X, - zilYi(i % 1y vy B)
vhere the z1 are iid N(0,1) and the Yi are such that P[Y1 « 0] =90 :
(1 =1, ..., n), then a = L2,Y /T¥2and b = [{£2,2 - (12,¥)2/1¥ 2}/ (n - )2
are, conditional upon Y, statistically independent of ce (x= la)/b .
Therefore, if K is a location and scale free statistic, it is a function

of ¢ and thus independent of a and b, which yields
Var(T|K) = E(a?] + Var(T(c)|K)

by the usual manipulations. Thus, we will estimate the conditional

variance Var(T|K) by

. M
Var (T|K) = E[a?) +% ] T2(e,) o
i=1

vhere we have simulated the unconditional distribution N times, of which
M satisfied the conditioning criterion. Arguments similar to those of
Gross (1973) and Simon (1976) demonstrate that this swindle can only

serve to reduce Monte Carlo variability. For distributions representable

e g s per———




] as N(0,1)/Independent, we will thus generate from the unconditional

distribution 10000 samples, estimating the various conditional quantities

desired based upon those of the 10000 samples meeting the criterion.

The Princeton Swindle has not, however, been extended to short-tailed
distributions. Nevertheless, an analogous variance reduction technique |
is available for any location-scale family admitting a two-dimensional i

complete and sufficient statistic (a,b), where a is a location statistic

{‘(‘:1! + czp - cla(z) +ey € $0, -w=c< €, <=}, and b is a scale

statistic {b(e;x + ¢,1) = |cl|b(:_(). for c, # 0, all ~=< c, < ®}. Under

2

these conditions, and with K as above,

Var(T|K) = E[a?]) + E[b2) E[T2(c)|K] ,

which permits essentially the same procedure as when the Princeton Swindle
applied. Thus, in the case of sampling from a uniform distribution on

the interval (-1,1),

2 n(n - 1)
Var(T|K) = D () * ot (D) E[T2(c) K] .

It should be noted that the savings due to the swindle in this case will
be 0(;1!) (order of the theoretically calculated term), an order in n higher
than E[T2 (S)IK] for most estimators. However, for near-efficient estimators,

especially those with I’.sz(Q)'KI - 0(;:7~)‘ the gains will be especially
valuable for small n. In independent work, Beal (1974) has also extended

the Princeton Swindle to the case of a two-dimensional complete and suf-

ficient statistic (a,b) with a a location statistic and b a scale statistic,

out not to the case of conditioning upon a location- and scale-free statistic.
Normal pseudorandom variates were generated by means of the polar

method, with a multiplicative congruential uniform generator used to obtain ‘




pseudorandom uniforms. Tables 1, 2, and 3 give estimated varianges for n = 20
°f T(Q) fo!' a= "05| -.‘. -.25. 0. -05. -10. .25. ‘nd -50. emiticml

N

on Q< 2.0, 2.0 < Q < 2.6, 2.6 < Q, and unconditionally for the N(0,1)

.I5N(0,1) + .25N(0,9), #nd U(-1,1) respectively. These ranges correspond
roughly to the categories for Q used in Tl of Hogg(1974), the first
second and third categories containing the population values for the
uniform (1.95), normal (2.58), and double exponential (3.30) respectively.
The entries are n x (estimated variance), followed in parentheses by an
estimate of the standard error of these simulated values. The bottom

row in each table gives the number of the 10000 samples falling into the

conditional or unconditional category.

(Tables 1, 2, and 3 about here)

Several points emerge as worthy of note from an examination of these
tables. First is that our suggestions from section 2 hold true. The
highly efficient estimators (trims with small a for N(0,1), a near
.25 for .75N(0,1) + .25N(0,9), and a near -.5 for U(-1,1)) exhibit only
small or no deviations of their conditional variances from their
unconditional variances. However, highly inefficient estimators (a near
-.5 for N(0,1) or .75M(0,1) + .25 N(0,9), and a near .5 for U(-1,1))
deviate greatly in this regard. For instance, the midrange (a = -.5),
while having an unconditional variance over 19 times that of T(.25)
for .75N(0,1) + .25N(0,9), has the same ratio approximately equal to 2.7
conditional on Q < 2.0. Thus, usage of T(-.5) wherever Q < 2.0 would be
not nearly as serious an error in this sampling situation as its uncon-

ditional behavior would suggest. Similar observations hold for other

comparisons.




A further use of these results (and, more generally speaking, this

sampling methodology) would be to assess the behavior of possible adaptive
estimators without extensive costly Monte Carlo studies. For instance,

for the estimator

T(-.5) Q < 2.0
T=4 T 2.0 Q< 2.6
T(.5) 2.6 < Q

(admittedly not a terribly informed choice) we estimate the variance at

N(0,1) (all variances still multiplied by 20, the sample size) to be

o 935 6648 2417 i
Var(T) = 15000¢1-578) *+ To000¢1+000) .+ To000¢1-372) = 1.144 .

Similarly, at .75N(0,1) + .25N(0,9) T would have estimated variance 2.283

and at U(-1,1) it would have estimated variance .211. An analysis incorrectly
ignoring the conditional behavior (taking the same linear combination as above
but using the unconditional variances) would have estimated these three variances
as 1.287, 2.732, and .176. Thus, we see that for the first two distributions,
an assessment based upon unconditional behavior drastically underrates

the adaptive estimator. The situation is, however, reversed for the

(admittedly extreme) uniform distribution. Thus we see that naive assessment

of adaptive estimators may well seriously misestimate (generally

overestimate) their variances.

4. SUMMARY AND CONCLUSIONS

Theoretical and Monte Carlo results are given to suggest that the

reason for the surprising robustness of adaptive estimators may lie in

the unsuspectedly good conditional behavior of their components. To
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facilitate efficient simulatjon, ‘rariance reduction methods were extended
to the relevant conditional situations. The results provide a method for
assessing more accurately and efficiently the behavior of prospective

robust adaptive estimators.
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TABLE 1

Estimated Conditional Variances of T(a) when Sampling from N(0,1)

; a Q < 2.0 2.0 £ Q< 2.6 2.6 < Q Unconditional
Midrange -.5 1.578 (.025) 2.408 (.024) 4.096 (.067) 2.871 (.027)
-.4 1.411 (.019) 1.790 (.014) 2,167 (.027) 1.876 (.012)
-.25 1.158 (.007) -1.190 (.003) 1.180 (.004) 1.184 (.003)
Mean 0.0 1.000 (.000) 1.000 (.000) 1.000 (.000) 1.000 (.000)
.05 1.007 (.000) 1.017 (.000) 1.038 (.000) 1.023 (.000)
.10 1.026 (.001) 1,049 (.001) 1.073 (.002) 1.055 (.001)
; .25 1.158 (.007) 1.190 (.003) 1.180 (.004) 1.184 (.0032)
Median .50 1.621 (.027) 1.490 (.009) 1.372 (.009) 1.464 (.006)
# Repetitions 935 6648 2417 10,000

——— A




11
TABLE 2
Estimated Conditional Variances of T(a)when
Sampling from .75N(0,1) + .25N(0,9)

o Q< 2.0 2.0< Q< 2.6 2.6 < Q Unconditional 'i
Midrange -.5 5.045 (.509) 13.474 (.387) 39.934 (.529) 34.610 (.4t3) &
-4 4,812 (.501) 10.999 (.327) 20.929 (.277) 18.856 (.234) f

-.25 3.530 (.350) 5.592 (.155) 6.616 (.080) 6.382 (.070)

Mean 0.0 2.334 (.139) 2.992 (.056) 3.056 (.026) 3.034 (.023)
05 2.192 (.115) 2.550 (.041) 2.253 (.015) 2.307 (.014)
.10 2.059 (.091) 2,221 (.030) 1.883 (.010) 1.948 (.010)
«25 1.879 (.063) 1.952 (.020) 1.766 (.007) 1.803 (.007)

Median .50 2.122 (.094) 2.286 (.031) 2.070 (.012) 2.111 (.011)

# Repetitions 138 1864 7998 10,000
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TABLE 3
Estimated Conditional Variances of T(a) when Sampling from U(-1,1)
a Q < 2.0 2.0< Q< 2.6 2.6 < Q Unconditional

Hidtln'. e 5 .037 (-000) 0087 (.000) .087 ( .000) 0087 ( .000)
-4 .099 (.000) «122 (.001) .241 (.016) .108 (.001)
-.25 +157 (.001) +253 (.004) 482 (.044) .192 (.002)

Mean 0.0 .282 (.003) «434 (.008) .676 (.071) .336 (.003)
.05 .228 (.004) .516 (.010) .815 (.087) +395 (.004)
.10 .378 (.005) 591 (.012) .866 (.094) 452 (.005)
.25 .553 (.007) +767 (.016) <979 (.109) .627 (.007)

Median <30 .844 (.012) «922 (.020) 1.086 (.132) .872 (.011)

# Repetitions 6641 3250 109 10,000
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